homesolutionsContent hubblogcontact

Wildfire Maps Help Firefighters in Real Time

Ronaldo Menezes
Jun 23, 2025
HomeBlog
Post
A

NASA sensor recently brought a new approach to battling wildfire, providing real-time data that helped firefighters in the field contain a blaze in Alabama. Called AVIRIS-3 (Airborne Visible Infrared Imaging Spectrometer 3), the instrument detected a 120-acre fire on March 19 that had not yet been reported to officials.

As AVIRIS-3 flew aboard a King Air B200 research plane over the fire about 3 miles (5 kilometers) east of Castleberry, Alabama, a scientist on the plane analyzed the data in real time and identified where the blaze was burning most intensely. The information was then sent via satellite internet to fire officials and researchers on the ground, who distributed images showing the fire’s perimeter to firefighters’ phones in the field.

All told, the process from detection during the flyover to alert on handheld devices took a few minutes. In addition to pinpointing the location and extent of the fire, the data showed firefighters its perimeter, helping them gauge whether it was likely to spread and decide where to add personnel and equipment.

“This is very agile science,” said Robert Green, the AVIRIS program’s principal investigator and a senior research scientist at NASA’s Jet Propulsion Laboratory (JPL), noting AVIRIS-3 mapped the burn scar left near JPL by the Eaton Fire in January. The AVIRIS-3 sensor belongs to a line of imaging spectrometers built at JPL since 1986. The instruments have been used to study a wide range of phenomena—including fire—by measuring sunlight reflecting from the planet’s surface.

Observing the ground from about 9,000 feet (3,000 meters) in altitude, AVIRIS-3 flew aboard several test flights over Alabama, Mississippi, Florida, and Texas for the NASA 2025 FireSense Airborne Campaign. Researchers flew in the second half of March to prepare for prescribed burn experiments that took place in the Geneva State Forest in Alabama on March 28 and at Fort Stewart-Hunter Army Airfield in Georgia from April 14 to 20. During the March span, the AVIRIS-3 team mapped at least 13 wildfires and prescribed burns, as well as dozens of small hot spots (places where heat is especially intense)—all in real time.

For the Castleberry Fire, shown at the top of this page on March 19, 2025, having a clear picture of where it was burning most intensely enabled firefighters to focus on where they could make a difference—on the northeastern edge.

Then, two days after identifying Castleberry Fire hot spots, the sensor spotted a fire about 4 miles (2.5 kilometers) southwest of Perdido, Alabama (above). As forestry officials worked to prevent flames from reaching six nearby buildings, they noticed that the fire’s main hot spot was inside the perimeter and contained. With that intelligence, they decided to shift some resources to fires 25 miles (40 kilometers) away near Mount Vernon, Alabama.

To combat one of the Mount Vernon fires (below), crews used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings.

‍

During the March flights, researchers created three types of maps, which are shown above for the Perdido and Mount Vernon fires. One, called the Fire Quicklook (left), combines brightness measurements at three wavelengths of infrared light, which is invisible to the human eye, to identify the relative intensity of burning. Orange and red areas on the Fire Quicklook map show cooler-burning areas, while yellow indicates the most intense flames. Previously burned areas show up as dark red or brown.

Another map type, the Fire 2400 nm Quicklook (middle), looks solely at infrared light at a wavelength of 2,400 nanometers. The images are particularly useful for seeing hot spots and the perimeters of fires, which show brightly against a red background. A third type of map (right), called just Quicklook, shows burned areas and smoke.

The Fire 2400 nm Quicklook was the “fan favorite” among the fire crews, said Ethan Barrett, fire analyst for the Forest Protection Division of the Alabama Forestry Commission. Seeing the outline of a wildfire from above helped Alabama Forestry Commission firefighters determine where to send bulldozers to stop the spread.

Additionally, FireSense personnel analyzed the AVIRIS-3 imagery to create digitized perimeters of the fires. This provided firefighters with fast, comprehensive intelligence of the situation on the ground.

Data from imaging spectrometers like AVIRIS-3 typically takes days or weeks to be processed into highly detailed, multilayer image products used for research. By simplifying the calibration algorithms, researchers were able to process data on a computer aboard the plane in a fraction of the time it otherwise would have taken. Airborne satellite internet connectivity enabled the images to be distributed almost immediately, while the plane was still in flight, rather than after it landed.

“Fire moves a lot faster than a bulldozer, so we have to try to get around it before it overtakes us. These maps show us the hot spots,” Barrett said. “When I get out of the truck, I can say, ‘OK, here’s the perimeter.’ That puts me light-years ahead.”

AVIRIS and the FireSense Airborne Campaign are part of NASA’s work to leverage its expertise with airborne technologies to combat wildfires. The agency also recently demonstrated a prototype from its Advanced Capabilities for Emergency Response Operations project that will provide reliable airspace management for drones and other aircraft operating in the air above wildfires.

‍

NASA Earth Observatory images annotated by Lauren Dauphin using AVIRIS-3 data via the AVIRIS Data Portal. Story by Andrew Wang, adapted for NASA Earth Observatory. 

‍

Tags:
geoeasy
Climate Changes
about the author
Ronaldo Menezes

Ronaldo brings decades of expertise to the field of geotechnology. Now, he's sharing his vast knowledge through exclusive courses and in-depth e-books. Get ready to master spatial and statistical analysis techniques, and raise your professional level.

see all articles
featured content
Climate Changes
The Thermohaline Circulation and Climate Change
R
Five of the best software for working with geographic data, excluding GDAL, which is often used by many of them
Geographic Images
The five best places to find geographic data, with the rationale for each choice
Technology
The ten best groups to learn about geoprocessing, with the rationale for each choice
Geographic Images
Five of the best YouTube channels for learning and collecting geographic data, with a rationale for each choice
Geotechnologies
Geotechnology, Agribusiness and climate change
newsletter

Sign up for our Newsletter to receive content and tips on Geotechnology and R. 👇

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Content you might also like

Climate Changes
Storm duo churns over the pacific: Hurricanes barbara and cosme
As the 2025 eastern Pacific hurricane season progresses, two tropical cyclones Barbara and Cosme were actively churning off the western coast of Mexico. Captured in a stunning image by the VIIRS (Visible Infrared Imaging Radiometer Suite) aboard the NOAA-20 satellite on June 9, 2025, at 20:15 Universal Time, the storms presented a remarkable sight from space.
Jun 30, 2025
Ronaldo Menezes
Climate Changes
Spring Flooding in Kazakhstan
For the second year in a row, northern Kazakhstan experienced significant flooding caused by rapid snowmelt combined with intense spring rains. In 2025, this natural phenomenon once again inundated riverside communities, displacing hundreds of residents and impacting livelihoods along the Esil River and other waterways.
May 29, 2025
Ronaldo Menezes
Geotechnologies
Unlocking Geospatial Power: Understanding Algorithm Providers in QGIS
QGIS has become a cornerstone of open-source geospatial analysis, offering a powerful and flexible environment for spatial data processing. At the heart of its analytical capabilities lies a hidden gem that many users overlook: Algorithm Providers.These providers serve as the engines behind QGIS’s geoprocessing tools, enabling users to perform everything from simple vector operations to advanced raster modeling—all from a single, unified interface. Understanding how these algorithm providers work—and how to access them—can drastically improve your workflow and unlock the full potential of QGIS.
May 9, 2025
Ronaldo Menezes
Geotechnologies
Floating Solar Power: A Smart Solution for India’s Renewable Energy Future
India is rapidly advancing its renewable energy landscape, and one innovation is standing out as a true game-changer: floating solar power. By installing photovoltaic (PV) panels on reservoirs and other water bodies, India is taking a smart and sustainable step towards meeting its growing energy demands without exacerbating land-use conflicts.
Apr 28, 2025
Ronaldo Menezes
Geographic Images
Copernicus Emergency Management Service Responds to the 7.7 Magnitude Earthquake in Myanmar
On March 28, 2025, a catastrophic earthquake measuring 7.7 on the Richter scale struck Myanmar, causing widespread devastation. The epicenter was located near Mandalay, Myanmar’s second-largest city, and the tremors were felt across the region. This powerful earthquake has resulted in significant human and infrastructural losses, with over 1,700 confirmed dead and more than 3,400 injured.
Apr 2, 2025
Ronaldo Menezes
Geographic Images
Revolutionizing Climate Science: Generating 3D Cloud Maps Using AI and Satellite Data
In a groundbreaking development for climate science, an international team of scientists has harnessed the power of artificial intelligence (AI) to create 3D profiles of clouds from satellite data. This innovative approach promises to provide new insights into cloud structures and their role in climate systems—something eagerly anticipated by researchers awaiting data from the EarthCARE mission.
Mar 27, 2025
Ronaldo Menezes
see all
Social media

Follow us on Instagram

@rmgeoeasy
contact

Contact us

Talk to us on WhatsApp

+351 919 428 158 >

Send us an E-mail

geoeasy0@gmail.com >

Follow our content

Go to Instagram >

homesolutionscontact
talk to us
© Copyright 2024 | Geoeasy Geotechnology
Carefully developed by Digital Bloom